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1. Develop an indexing system using Apache Solr and its ExtractingRequestHandler (“SolrCell”) or using 
Elastic Search and Tika­Python. 
a. In this part, we chose SolrCell and downloaded from the link gave by homework description. In order to support 
the feature of GeoParser, OCR and cTAKES, we need to make sure that we have upgraded SolrCell. For upgrade 
SolrCell, we need to edit file from the path solr­4.10.4/lucene/ivy­versions.properties which enable you to build  and 
upgraded to the latest version. From the path solr­4.10.4/solr/contrib/extraction/lib, we can check the upgraded new 
jars with the following: 

Old version  New Version 

metadata­extractor­2.6.2.jar  metadata­extractor­2.8.1.jar 

commons­compress­1.7.jar  commons­compress­1.10.jar 

tika­core­1.5.jar  tika­core­1.11.jar 

tika­parsers­1.5.jar  tika­parsers­1.11.jar 

tika­xmp­1.5.jar  tika­xmp­1.11.jar 

 
b. We build the latest Tika trunk (1.11­SNAPSHOT) with the the following support: 

Parser  Test Results 

GeoTopic parsing 

 

OCR 

 

cTAKES / UIMA 

 
……. 



 

c. We execute command “bin/nutch dump” to dump data as input source for solr from the crawled data  of 
assignment #1. Then, we write a bash file named “mypost.sh” for import dump data to solr. 

 
2.Leverage the Nutch indexing system to build up an Apache Solr index. 
a. Compare the metadata extracted from using Tika in Nutch during crawling upstream compared to your SolrCell 
based Tika run generated in Task #2. 
b. What did Tika extract in Nutch compared to what SolrCell extracts? 
c. Describe the indexing process – what was easier – Nutch/Tika + SolrIndexing; or SolrCell? 
The following results show more details for above questions. 

   Nutch/Tika + Solrindexing   SolrCell 

Extracted 
Metadata 

 

 

Indexing 
Process 

1.Take the crawl data that we crawled 
from assignment #1 as input. 
2.Before indexing we need to  invert all of 
the links first, so that we may index 
incoming anchor text with the pages. 
3.Then, we need to make sure solr in 
integrate with our nutch. 
4.Finally, we use command  “bin/nutch 
solrindex <solr url> <crawldb> [­linkdb 
<linkdb>][­params k1=v1&k2=v2...] 
(<segment> ...| ­dir <segments>) 
[­noCommit] [­deleteGone] [­filter] 
[­normalize]” to send our data to solr. 

1.Take the crawl data that we crawled from 
assignment #1 and use command bin/nutch dump 
to dump those data such as html or image files as 
input. 
2.Run a bash file with code “curl 
"$URL?literal.id=doc­$RANDOM$RANDOM&u
prefix=attr_&fmap.content=attr_content&commit
=true" ­F filename=@$f 
” for importing data into solr. 
 
 



Snippet 

 

 

 

 

From our opinion, we consider that the process of indexing, Nutch/Tika + Solrindexing is much easier than SolrCell. 
Since using SolrCell, we need to dump out those files from the original crawled data first. Second, we need to run 
the bash file for finding html and image files with command curl to import all data into solr. However, using 
Nutch/Tika +Solrindexing, we can import all crawled data into solr for indexing without additional handling for 
crawled data. Though SolrCell gives users to have more freedom on operating data for importing data into Solr. We, 
therefore, consider that Nutch/Tika + Solrindexing is much more easier than SolrCell. 
 
3. Design and implement two ranking algorithms for your Weapons data documents 
Describe in detail and formally both of your ranking algorithms. You should describe the input, what your 
algorithms do to compute a rank, how to test them (and prove that they are working as expected). Do NOT 
simply provide advantages and disadvantages from a quick Google search. 
 
In content­based, the program asks solr for fields ‘tf’ and ‘idf’ of every document for the query text. Tf means the 
term frequency of the query term in certain document. Idf is the inverse of having query term in how many 
document. The higher the idf score means more 
important when this query term showing. And each 
‘tf’ multiply ‘idf’ stands for how the document is 
relevant to the query text among all documents. At 
last, we sort the sum of each ‘tf’ multiply ‘idf’ in a 
descending order. 
We ask user for the query and the lines of data going 
to show first. For example if the user query for “texas 
rifle” and ‘3 lines for showing’, then the program will 
get the ‘tf’ of texas and rifle, and ‘idf’ of texas and 
rifle. Then showing the top 3 result after sorting. 
The tf and idf fields are calculated by solr. No matter how many query we input, there’s no change of those two 
fields of certain document of certain input query. For example, if input 1 query for “rifle 2015 california” and input 
2 query only for “rifle”; those two query will have the same ‘rifle’ idf field among all document, and will have same 
‘rifle’ tf field for same document. It proves that tf and idf in solr is stable. So that this method must work.  
( idf of rifle are all the same )                                                             (tf of rifle are the same among same document)  

 
 
 
 
 
 



In link­based, we simply build a graph and link all document which share same features. After linking the 
documents, we use pagerank algorithm to calculate the score of each document based on the query. The score stands 
for the linking relevancy to the query input. The linking relevancy of document A is defined as LR(A) = 
(1­0.85)*0.85*LR(B)/out_link_num(B). It has been proven that the value of all linking relevancies in a graph will 
become stable after an amount of iterations. 
We ask the user the input the query just as previous. Then we try to find the features of the query term through 
metadata, geo­data and solr­data. Each feature will form a graph, and a document will be in several groups if it is in 
multiple features. At last, we apply the pagerank algorithm among all graphs, and assume that if the total variation 
of each iteration is less than 0.01 means that the pagerank score is becoming stable and just stop iterating. 
To prove the link­based algo is not easy, because the linking relevance is not easy to compute by intuition. Since the 
most important part is the graph, I think the easiest way is to show it on D3. D3 can simply show the graph of our 
linking result and also showing the score of the link­based score by the size of each node. In problem 8 there’s a 
graph example of applying D3,which We mostly use to evaluate our graph. 

 
 
 
 
 
 
 
 
 
 
 
 

Please answer how effective the link­based algorithm was compared to the content­based ranking algorithm in light 
of these weapons challenge questions?  
 
After testing these two methods, we find that content­based one is more sensitive of the query string and the 
‘content’ of the document. Since the tf and idf value is calculated by solr, it’s not that difficult and expensive to get 
these fields. Otherwise the cost is high to use tfidf score. The link­based method is based on links and query features 
and apply for pagerank algorithm. The pagerank algo is a great method to evaluate the linking score in graph. The 
issue about link­based method is that how precise and how complete the feature graphs are. If the feature graphs are 
perfectly designed, then linked­based algo is quicker, cheaper and more efficient, since we only need to build the 
graphs in the beginning. However, a great searching must be use a combination of methods. They are both great 
method, but I think link­based should have more weight in the searching engine. 
In the weapons questions, I think tfidf perform better since solr has already get the tf idf fields. And also we are not 
able to build such a completed graph. However, if we have more time and more sources available, I would say that 
building the link­based is a better direction. 
 
What questions were more appropriate for the link based algorithm compared to the content one?  
 
Searching for a specific key words from the content of is the main feature of content­based algo. Thus, if we try to 
search for certain specific content, it’s more efficient to use content­based. For example, if I like to find ‘AK47 with 
bullet’, it’s better to use content­based and input ‘AK47 AND bullet’. Linke­based do better like ‘buying guns 
online in us ’, which has some features we might able to extract from, and it’s not precise if doing with 
content­based. 
 



 
4. Develop a suite of queries that demonstrate answers to the relevant weapons related questions below. 

a. Identify the Mexican unauthorized purchase of gun in the past 5 years. 
­ Query: Mexico^4 AND gun^4 AND content: (illegal OR prohibit OR ban OR  (official AND lack)) AND 

(sell OR buy OR sale) AND [2010 TO NOW] AND url: *html 
­ Explanation:   
> keywords for “unauthorized”: illegal, prohibit, ban, (lack, official) 
> keywords for “purchase”: sell, buy, sale 

 
b. 1) Identify all rifles which are sold in Mexico from 2012 to 2015. 

­ Query: content: rifle AND Mexico AND [2012 TO 2015] AND (sale OR buy OR sell ) AND url:*html 
­ Explanation: 
> keywords for “sold”: sell, buy, sale 

2) Determine whether rifles that is queried via b(1) are stolen goods or not. 
­ Query: content: rifle AND Mexico AND [2009 TO 2012] AND (sale OR buy OR sell ) AND url:*html 
­ Explanation:  
> In order to know whether the rifles that we queried in b(1) are stolen goods or not, we have to compare 
the number of rifles that are sold from 2012 to 2015 with the number of rifles that are sold earlier than 
2012 (In our case, the time window we selected is from 2009 to 2012). If the former is larger than the 
later, then we conclude that all rifles that we retrieve are related to stolen goods.   

> Based on our queries for b(1) and b(2), both the number of queries that we found in b(1) and b(2) are 1. 
Thus, all rifles that we get in b(1) are NOT related to stolen goods.  

   
c. Identify whether the rifles which are sold in Mexico from 2012 to 2015 are stolen. 

­ Query: content: rifle AND Mexico AND [2012 TO 2015] AND (sale OR buy OR sell ) AND url:*html 
­ Explanation: 
> keywords for “sold”: sell, buy, sale 
To decide if the rifles which are sold from 2012 to 2015 are related to stolen goods, we have to know the 
number of rifles that is sold earlier than 2012 (In our case, the time window we selected is from 2009 to 
2012). 
 
­ Query: content: rifle AND Mexico AND [2009 TO 2012] AND (sale OR buy OR sell ) AND url:*html 
 
Since both the number of rifles that we quiry are 1, we conclude that all rifles which are sold in Mexico from 
2012 to 2015 are NOT stolen. 
 

d. Identify gun and weapon ads that are posted by person whom are underage. 
1) If underage means the age under 17: 
­ Query: (gun OR weapon)^4 content: underage OR ((under OR below) AND 17) AND url: *html 
­ Explanation:  

                 > keywords for “underage”: underage, under 17, below 17 
2) If underage means the age under 21: 
­ Query: (gun OR weapon)^4 content: underage OR ((under OR below) AND 21) AND url: *html 
­ Explanation:  

                 > keywords for “underage”: underage, under 21, below 21 
   

e. Identify the unlawful transfer, sale, possession of explosives, and WMD devices  



­ Query: (violate OR violation OR illegal OR prohibit OR ban OR criminal)^4 AND  content: (explore OR 
explosive OR nuclear OR chemical OR transfer OR (sale OR buy OR sell)) AND url: *html 

­ Explanation:   
> keywords for “unlawful”: violate, violation, illegal, prohibit, ban, criminal  
> keywords for “sale”: sell, buy, sale 
> keywords for “possession of explosives”: explore, explosive 
> keywords for “WMD devices”: nuclear,  chemical 

 
5. Develop a program in Python, Java, and/or Bash that runs your queries against your Solr or ElasticSearch 
index and outputs the results in an easy to read list of results demonstrating your relevancy algorithms and 
answers to your challenge questions from Task #5. 
* The program that we developed is the attached file “Q5.py”  

a.Identify the 
Mexican 
unauthorized 
purchase of gun in 
the past 5 years. 

* For more detail, please see the attachment “Q5(a).txt” 

    

b(1). Identify all 
rifles which are 
sold in Mexico 
from 2012 to 2015. 

* For more detail, please see the attachment “Q5(b1).txt” 

 

b(2). Determine 
whether rifles that 
is queried via b(1) 
are stolen goods or 
not. 

As the explanation in Q4(b2), we have to retrieve all rifles which are sold in Mexico from 
2009 to 2012. Both the number of rifles in b(1) and b(2) are 1. Thus, all rifles that we get in 
b(1) are NOT related to stolen goods. 
* For more detail, please see the attachment “Q5(b2).txt” 



 

c. Identify whether 
the rifles which are 
sold in Mexico 
from 2012 to 2015 
are stolen. 

Following is the output for “all rifles which are sold in Mexico from 2012 to 2015.” 
* For more detail, please see the attachment “Q5(c1).txt” 

 
In order to know whether the rifles which are sold from 2012 to 2015 are related to stolen 
goods, we have to know the number of rifles that is sold earlier than 2012 (in our case, the 
time window we selected is from 2009 to 2012). Following is the output that “all rifles 
which are sold in Mexico from 2009 to 2012.” 
* For more detail, please see the attachment “Q5(c2).txt” 

 
Since both the number of rifles that we quiry are 1, we conclude that all rifles which are 
sold in Mexico from 2012 to 2015 are NOT stolen. 

d. Identify gun and 
weapon ads that 
are posted by 

If underage means the age under 17: 
* For more detail, please see the attachment “Q5(d1).txt” 



person whom are 
underage. 

 
If underage means the age under 21: 
* For more detail, please see the attachment “Q5(d2).txt” 

 

e. Identify the 
unlawful transfer, 
sale, possession of 
explosives, and 
WMD devices. 

* For more detail, please see the attachment “Q5(e).txt” 

 

 
6. (Extra Credit) Develop a Lucene­latent Dirichlet allocation (LDA) technique for topic modeling on your 
index and use it to rank and return documents. 



The main idea for Lucene­latent Dirichlet allocation (LDA) is that this algorithm uses unsupervised learning while 
function query in solr use merely TF/IDF algorithm.  
First, using command “bin/indexDirectory [­­help] <inDir> <outIndexDir> <outLDAIndex> [­­fileCodes 
<fileCodes>] [­­ldaConfig ldaConfig1,ldaConfig2,...,ldaConfigN ]” will generate the LDA index for our  crawled 
data. The LDA will using unsupervised learning to separate those files into different groups according to each files 
similarity. 
Second, using command “bin/queryWithLDA [­­help] <indexDir> <LDAIndexDir> <queryDir> <resultsDir> [­­K 
<K>] [­­scoringCode <scoringCode>]”, we can get the output sets with respect to input queries and learned model. 
Take the query “What time­based trends exist in Gun ads?” in question 4.a for example. We perceive that keywords 
for “unauthorized” are “illegal, prohibit, ban, (lack, official)” and keywords for “purchase” are “sell, buy, sale”. In 
function query, the results only return data that match word “illegal, sell” in content field. However, using LDA, we 
get the result sets for keyword “illegal” are content field contains words “legal, banned, forbidden, restrict...” for the 
reason of LDA use unsupervised learning and consider those files are similar. 
 
7. (Extra Credit) Figure out how to integrate your relevancy algorithms into Nutch. 
The interface of ScoringFilter in Nutch provided by homework description contains method injectScore, initialScore 
and distributeScoreToOutlinks. We implement this interface and use method injectScore to store the original score 
from SolrCell and use method initialScore to store the score of relevant links that are produced by our link­based 
algorithm. Finally, we use the method of distributeScoreToOutlinks for keep updating the new links and scores. 
That’s the way how we figure out to integrate relevancy algorithm into Nutch. 
 
8. (Extra Credit) Create a D3­based visualization of your link­based relevancy. 
We write python to implement our link­based algorithm and generate json, and then present the json data by D3. We 
try to make a query with small amount of data because Plesase check getjson.py, getJson.json and d3visual.html. 
 

 
 
 



 


